

Variable Types

Explanatory variable	The variable that drives the relationship; the "independent variable."
	Graphed as the <i>x</i> -axis.
Response variable	The variable changed by the explanatory variable.
	Graphed as the <i>y</i> -axis.
Strength of Relations	Many texts refer to r as simply the "correlation"
Constation Configuration (many 1, 1)	
Correlation Coefficient, r	(range: -11)
Indicates the direction and strength of the correlation between the explanatory & response variables.	
1 –	

- $r = \frac{1}{n-1} \sum Z_x Z_y$ n = number of points; $Z_x, Z_y = Z$ scores of x- and y-values
- r = -1 Strong negative correlation
 - r = 0 No correlation
 - r = +1 Strong positive correlation

Least-Squares Regression

• Derives an equation expressing the response variable as a linear function of the explanatory variable.

 $\hat{y} = \alpha + bx$ $\hat{y} = \text{predicted value}; \alpha = \text{predicted value when } x = 0; b = \text{slope of line}$

▷ Note this is just slope-intercept form from Algebra 1.

Residuals

- A *residual* is the difference between a particular observed value and the value predicted by the regression line.
 - ▷ residual = $y \hat{y}$ y = measured value; \hat{y} = predicted value (from regression line)
- A *residual plot* is a scatter plot of the residual values versus *x*.
 - ▷ Can be used to determine whether a linear interpretation is appropriate for the data.
 - ▷ If the residual plot shows a distinct pattern, a linear interpretation is not appropriate.

Regression Line (y = a + bx) from r

 $b = r \frac{s_y}{s_x}$ $a = \overline{y} - b\overline{x}$

r - correlation coefficient; $s_{x_i} s_y$ - standard deviation of x & y

Goodness-of-fit

Yes, this really is just the correlation coefficient squared.

(range: 0...1)

Coefficient of determination, $r^2 \stackrel{\swarrow}{\sim}$

 $r^2 = 1 - \frac{\Sigma(\text{residuals}^2)}{\Sigma(y_i - \overline{y})}$

s = standard deviation; n = number of points

 \triangleright The proportion of the variations in *y* that can be explained by *x*.

Usually expressed as a percentage.

▷ Also a measure of how well the regression line matches the data.

0 = Horribly; 1 = Perfectly

Standard deviation of the residuals, s

▷ The typical distance between predicted and measured values.

$$s = \sqrt{\frac{\Sigma(\text{residuals}^2)}{n-2}}$$
 $s = \text{standard deviation}; n = \text{number of points}$