

Comparing Two Populations

Comparing two proportions

Confidence interval

• Confidence Interval for the difference between two population proportions p_1 and p_2 at a specified confidence level is:

CI =
$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

 \hat{p}_1 , \hat{p}_2 - Proportions of samples 1 & 2; z^* - Critical value for the CI; n₁, n₂ - Size of samples 1 & 2

Z* (Z _{crit}) Values	
Confidence	<i>Z</i> *
90%	1.645
95%	1.96
98%	2.33
99%	2.58

Significance Test

As with one-sample tests, calculate a P-value from the z statistic.

Null and alternative hypotheses

- H_0 : $p_1 p_2 = 0$
- H_{a} : $p_{1} > p_{2}$ H_{a} : $p_{1} < p_{2}$ H_{a} : $p_{1} \neq p_{2}$

Z-Statistic

$$z = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p}_{c}(1 - \hat{p}_{c})(\frac{1}{n_{1}} + \frac{1}{n_{2}})}}$$

 \hat{p}_1 , \hat{p}_2 - Proportions of samples 1 & 2; p_c - Pooled proportion **n₁, n₂** - Size of samples 1 & 2

Obtaining P-value from z score

Upper-tailed test

 $H_0: p_1 - p_2 > 0$

P-value = 1 - P(z)

Lower-tailed test

 $H_0: p_1 - p_2 < 0$

P-value = P(z)

Two-tailed test

 $H_0: p_1 - p_2 \neq 0$

if z > 0, P-value = 2(1 - P(z))

if z < 0, P-value = 2P(z)

 p_1 , p_2 - Proportions of populations 1 & 2; z - Z-score/test statistic; P(z) - P-value from z table

Validity requirements

These equations are valid if:

- Random data
- 10% rule

 $n_{1,2} \le 0.1 N_{1,2}$

Large counts

 $n \cdot \hat{p} \ge 10$ $n(1-\hat{p}) \geq 10$

Calculator Note

Population proportions

• 2-PropZInt Interval

• 2-PropZTest Significance

Population means

• 2-SampTInt Interval

• 2-SampTTest Significance

Comparing Two Means, μ_1 and μ_2

Confidence Interval

 Standard Deviation for the difference between two populations whose stddev's are known:

$$\sigma = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 For t^* , use the smaller degrees of freedom of n_1 or n_2

• Confidence Interval for the difference between two population means μ_1 and μ_2 at a given confidence level is:

$$CI = (\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
 For t^* , use the smaller degrees of freedom of n_1 or n_2

Validity requirements

These equations are valid if:

- Random data
- 10% rule

 $n_{1,2} \le 0.1 \, N_{1,2}$

Large counts

 $n_1 \ge 30$

 $n_2 \ge 30$

Significance Test

T-Statistic

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 x_1, x_2 - Means of samples; s_1, s_2 - Std. dev. of samples $\mu_1 - \mu_2$ - Hypothesized difference in population means n_1, n_2 - Size of samples

Calculator Note

Population proportions

• 2-PropZInt Interval

• 2-PropZTest Significance

Population means

• 2-SampTInt Interval

• 2-SampTTest Significance