

Validity requirements

 X^2 tests are valid if:

• Random data

Large counts

 $n \le 0.1N$

Expected counts > 5

• 10% rule

Goodness of Fit

Tests whether the categorical data matches a hypothesized distribution.

Null and alternative hypotheses

- H_0 : The stated distribution is correct
- H_{α} : The stated distribution is not correct

Calculating $\chi^{\scriptscriptstyle 2}$

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$

Degrees of freedom = #categories – 1

Two-Way Tables

Test for Homogeneity

Tests whether the distribution of a categorical variable is identical in two or more populations.

Null and alternative hypotheses

- H₀: There is no difference in the distribution of the categories between the populations.
- *H*_a: There is a difference in the distribution of the categories between the populations.

Calculator Note χ² cdf P-value from χ²

- $\chi^2 GOF-wTest$ G'ness Fit
- χ^2 -Test Ind. & Homog.

Calculating Expected Counts & Degrees of Freedom

Expected Count = (Row total)(Column total) Table total

Degrees of freedom = (#rows - 1)(#columns - 1)

Test for Independence

Tests whether there is an association between two categorical variables. Calculation same as above.

Null and alternative hypotheses

- H_0 : There is no association among the categories (they are independent)
- H_{α} : There is an association among the categories (they are not independent)