

Vector Notation

In printed material, vector names are indicated by heavy text: A. In handwriting, vectors are usually indicated by an arrow above the name: \overrightarrow{A}

$A = (r, \theta)$	Vector with specified r and $ heta$ values
$B = \langle x, y \rangle$	Vector with specified x- and y-components
C = xi + yj	Vector with specified unit-vector components
 A or [[A]]	Magnitude (<i>i.e.</i> , length) of vector A .

Basic Operations

In the following, $\mathbf{A} = \langle a_1, a_2 \rangle$, $\mathbf{B} = \langle b_1, b_2 \rangle$

Addition, subtraction, scalar multiplica	c is a scalar constant	
$A + B = \langle a_1 + b_1, a_2 + b_2 \rangle$	$cA = \langle ca_1, ca_2 \rangle$	(a.k.a., a number). C Q 2 >
$A - B = \langle a_1 - b_1, a_2 - b_2 \rangle$		

Dot Product

The dot product of two vectors is a scalar value, *i.e.*, a number, not a vector.

•
$$\mathbf{A} \cdot \mathbf{B} = a_1 b_1 + a_2 b_2$$

• $\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos(\theta) \quad \leftarrow \theta$ is the angle between the two vectors

Other Vector Calculations

Vector between two points

Given points $A(x_1, y_1)$ and $B(x_2, y_2)$,

• Vector **AB** = $(x_2 - x_1)i + (y_2 - y_1)j$

Unit Vector

â, the unit vector parallel to $\mathbf{A} = \langle a_1, a_2 \rangle$, is

•
$$\hat{\mathbf{a}} = \frac{\alpha_1}{\|\mathbf{A}\|}\mathbf{i} + \frac{\alpha_2}{\|\mathbf{A}\|}\mathbf{j}$$

Orthogonal Vectors

If **A** and **B** are orthogonal (*i.e.* perpendicular to each other), then

 $\mathbf{A} \bullet \mathbf{B} = \mathbf{0}$

Projection of a onto b

This is the component of ${\bf a}$ in the direction of ${\bf b}$

$$\text{proj}_{b}a = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \times \mathbf{b}$$

Cross Product

The cross product results in a new vector that is perpendicular to the original vectors. Note that the cross product is applicable only to three-dimensional vectors.

- Magnitude: $\mathbf{A} \times \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \sin(\theta)$
- Direction: perpendicular to the original vectors using the right-hand rule for $\mathsf{A} \to \mathsf{B}$

Formal Definition of cross product

