

Cylinders

Open Cylinder

Fundamental **frequency**: $f_1 = \frac{V_s}{2L}$

Fundamental wavelength: $\lambda = 2L$

 λ - wavelength; L - Length of cylinder

- Has antinodes at both ends
- Can produce all harmonics

Closed Cylinder

Fundamental **frequency**: $f_1 = \frac{V_s}{4L}$

 ${\it f_1}$ - Frequency of fundamental; ${\it v_s}$ - Speed of sound (343 m/s); ${\it L}$ - Length of cylinder

Fundamental wavelength: $\lambda = 4L$

 λ - wavelength; L - Length of cylinder

- Has an antinode at the open end; a node at the closed end.
- Can produce only odd-numbered harmonics

Harmonic f & λ $f_n = nf_1$ $\lambda_n = \lambda_1 / n$ f_1 = fundamental frequency λ_1 = fundamental wavelength

Vibrating String

Fundamental frequency: $f_1 = \frac{V_W}{2L}$

Fundamental wavelength: $\lambda = 2L$ λ - wavelength; L - String length

Wave velocity, $v_W = \sqrt{\frac{TL}{m}}$

- Has an nodes both ends
- Can produce all harmonics
- Has a node at both ends.