

Constants

Coulomb's constant, $k = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$ Charge on electron, $e = -1.602 \times 10^{-19}$ Coulomb Mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Electrostatic Force and Fields

Force

Force Between Two Charges

$$F = \frac{k q_1 q_2}{d^2}$$

F - Force, Ν; **E** - Electric field strength, Ν/c; **q** - charge, C; **d** - distance between charges, m

Electric Fields *Field around a charge*

$$E = \frac{kQ}{d^2}$$

E - Field strength, N/C; Q - charge, Coulombs; r - distance from charge, m

Potential Energy, U, & Work, W

U = qEd	$W = U_{\rm f} - U_{\rm i}$
$U = \frac{k q_1 q_2}{d}$	W = Vq
$U = \frac{kq^2}{d}$	

U - Potential energy, J; W - Work, J; q, q1, q2 - charge, C; E - Field strength, N/C; d - distance, m; V - potential diff., V

Force on a charge in an electric field F = Eq

Vectors

Quantities in this document that are set in **dark type** are vectors.