

Voltage, Current, Resistance, Capacitance, Power

V = IR	P = IV	kWh = (kW)(hr)
Q = CV	$P = \frac{V^2}{R}$	

V - Voltage; I - Current, C; R - Resistance, Ω; C - Capacitance, F; P - Power, W; E - Energy, J; kWh - Kilowatt-Hours

Energy and Work	Electric Fields
E = Pt	V = Ed
$E = I \vee t$ $W = Vq$	W = qEd
E - Energy, J; P - Power, W; t - time, s; 1 - Current, A; V - Voltage; P - Power, W; W - Work, J; q - Charge, C;	E - Electric field, N/C; V - Voltage; ; d - distance, m; W - Work, J; q - Charge, C;

Series and Parallel Circuits

Series Circuits

 $R_{eq} = R_1 + R_2 + R_3 + \dots$

- ▷ Current is the same through all resistors
- ▷ Voltage may be different across each resistor
- ▷ Individual voltages add up to the total voltage at the source

Parallel Circuits

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

- ▷ Voltage is the same across all resistors
- ▷ Current may be different through each resistor
- ▷ Individual currents add up to the total current at the source