

Terminology and Units

- Oxidation To lose electrons
- Reduction To gain electrons
- Oxidizing agent causes the other reactant to oxidize; it is itself reduced.
- Reducing agent causes the other reactant to reduce; it is itself oxidized.
- Oxidation state (or number) A "virtual charge" on an atom within a molecule; used to track changes in electrons.

Units of electron transfer

- 96,500 Coulombs (C) = 1 mole of electrons
 - ⊳ 96,500 is *Faraday's Constant* (F)
- 1 *Ampere* (Amps, A) = 1 C/s

Oxidation State ("OS") Rules

► Uncombined element: 0	e.g., O ₂ , Fe
► Sum of OS in a neutral species is 0 and in an ion is equal to the charge.	e.g., H ₂ SO ₄ , CO ₃ ²⁻ , Na ⁺
► Group 1 metals, +1; Group 2 metals, +2	e.g., NaCl, BaCl ₂
► Fluorine in compounds: –1	e.g., BaF ₂
► Oxygen: –2 in most covalent compounds	e.g., Na ₂ O
Exception: peroxides, in which oxygen's OS is −1	e.g., H ₂ O ₂
Exception: Superoxides, in which oxygen's OS is −½	e.g., KO ₂
► H in compounds: +1 in covalent compounds with nonmetals	e.g., H₂S
▶ Binary metallic compounds, Group 15: –3; Group 16: –2; Group 17, –1	e.g., Na₃P, H₂S, SrF₂

Balancing Redox Equations

Acid & Basic solutions

Note that the balancing process is nearly identical for balancing redox reactions in acidic and basic solutions; the basic solutions add two extra steps.

- 1 Write the equations for the oxidation and reduction half reactions.
- 2 For each half reaction:
 - ▶ Balance all the elements except H and O.
 - ▶ Balance oxygen using H₂O
 - ▶ Balance hydrogen using H⁺
 - ▶ Basic solutions: Neutralize the H⁺ by adding OH⁻ to both sides of the reaction
 - \triangleright Basic solutions: Combine H⁺ and OH⁻ to make H₂O
 - ▶ Balance the charge using electrons
- 3 Balance the electrons lost and gained by multiplying the half-reactions by integers as necessary
- 4 Add the half-reactions, cancelling items that appear on both sides.