Terminology and Units

- Oxidation - To lose electrons
- Reduction - To gain electrons
- Oxidizing agent - causes the other reactant to oxidize; it is itself reduced.
- Reducing agent - causes the other reactant to reduce; it is itself oxidized.
- Oxidation state (or number) - A "virtual charge" on an atom within a molecule; used to track changes in electrons.

Units of electron transfer

- 96,500 Coulombs (C) = 1 mole of electrons
- 96,500 is Faraday's Constant (F)
- 1 Ampere (Amps, A$)=1 \mathrm{C} / \mathrm{s}$

Oxidation State ("OS") Rules

- Uncombined element: 0
- Sum of OS in a neutral species is 0 and in an ion is equal to the charge.
- Group 1 metals, +1; Group 2 metals, +2
- Fluorine in compounds: -1
- Oxygen: -2 in most covalent compounds
\triangleright Exception: peroxides, in which oxygen's $O S$ is -1
\triangleright Exception: Superoxides, in which oxygen's OS is $-1 / 2$
- Hin compounds: +1 in covalent compounds with nonmetals
- Binary metallic compounds, Group 15: -3; Group 16: -2; Group 17, -1
e.g., O_{2}, Fe
e.g., $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Na}^{+}$
e.g., $\mathrm{NaCl}, \mathrm{BaCl}_{2}$
e.g., BaF_{2}
e.g., $\mathrm{Na}_{2} \mathrm{O}$
e.g., $\mathrm{H}_{2} \mathrm{O}_{2}$
e.g., KO_{2}
e.g., $\mathrm{H}_{2} \mathrm{~S}$
e.g., $\mathrm{Na}_{3} \mathrm{P}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SrF}_{2}$

Acid \& Basic solutions

Note that the balancing process is nearly identical for balancing redox reactions in acidic and basic solutions; the basic solutions add two extra steps.
1 Write the equations for the oxidation and reduction half reactions.
2 For each half reaction:

- Balance all the elements except H and O .
- Balance oxygen using $\mathrm{H}_{2} \mathrm{O}$
\triangleright Balance hydrogen using H^{+}
\triangleright Basic solutions: Neutralize the H^{+}by adding OH^{-}to both sides of the reaction
\triangleright Basic solutions: Combine H^{+}and OH^{-}to make $\mathrm{H}_{2} \mathrm{O}$
- Balance the charge using electrons

3 Balance the electrons lost and gained by multiplying the half-reactions by integers as necessary
4 Add the half-reactions, cancelling items that appear on both sides.

