

Concentration

Percent concentration by mass %(m	/m)	
%conc. = $\frac{\text{mass solute}}{\text{mass solution}} \times 100$		
Percent concentration %(m	/v)	
%conc. = $\frac{\text{grams solute}}{\text{mL solution}} \times 100$		
Parts per million by mass		
$ppm = \frac{mass \ solute}{mass \ solution} \times 10^6$		
Percent concentration by volume %(v/v)		
%conc. = $\frac{\text{volume solute}}{\text{volume solution}} \times 100$		
For the concentration equations, mass and volume can be i	n any	

units as long as the numerator and denominator match.

Gas Solubility and Pressure (Henry's Law)

solubility ₁	solubility_
pressure ₁	pressure ₂

Colligative Properties

Freezing Point Depression

$$\Delta T_{\rm F} = i \cdot K_{\rm F} \cdot m$$

 ΔT_F - Freezing point depression; i - # ion particles per solute molecule; m - molality; K_F - Cryoscopic constant of the solvent

Boiling Point Elevation

$$\Delta T_{\rm B} = i \cdot K_{\rm B} \cdot m$$

 $\begin{array}{l} \Delta T_B \text{ - } Boiling \text{ point elevation; } i \text{ - } \# \text{ ion particles per solute molecule; } \\ m \text{ - } molality; \ K_B \text{ - } Ebullioscopic constant of the solvent } \end{array}$

Molarity (M)

 $M = \frac{\text{moles solute}}{\text{liters solution}}$

Molality (m)

m = moles solute kg solvent

Dilution

$$c_1 V_1 = c_2 V_2$$

Osmotic Pressure

Note that osmotic pressure uses **molarity**, not molality.

 Π - osmotic pressure, atm; i - # ion particles per solute molecule; M - molarity; T - temperature, °K; R - ideal gas constant, 0.08206

> **K_F & K_B for water** K_F = 1.86 °c kg/mol K_B = 0.512 °c kg/mol