utoring

Definitions: Acid & Base, Conjugate Acid & Conjugate Base

- An *acid* donates protons (*i.e.*, Hydrogen ions) in a reaction
- A base accepts protons (*i.e.*, Hydrogen ions) in a reaction
- A conjugate base results from removing a single H⁺ from an acid.

 H_2SO_4 (acid) \rightarrow HSO₄ (conjugate base)

• A *conjugate acid* results from adding a single H⁺ to a base. H_2O (base) $\rightarrow H_3O^+$ (conjugate acid)

Concentration, pH, pOH

pH, pOH

- $pH = -log[H^+]$
- $pOH = -log[OH^-]$
- pH + pOH = 14

Neutral Solution

pH of Acids & Bases

Acids: pH < 7Bases: pH > 7 Neutral: pH = 7

Neutralization

• Moles H^+ from acid = moles OH^- from base.

 $c_a V_a = c_b V_b$ c_{a,c_b} - Concentrations of acid and base in any units; V_aV_b - Volumes of acid and base in any units

[H⁺], [OH⁻] • [H⁺] = 10^{-pH} • [OH⁻] = 10^{-pOH} • [H⁺][OH⁻] = 10⁻¹⁴ In a neutral solution: $[H^+] = 1 \times 10^{-7}$ $[OH^-] = 1 \times 10^{-7}$ pH = 7 pOH = 7

Other Definitions

The definitions of acid and base at left are the Brønsted-Lowry definition; there are two others:

Arrhenius

- Acids ionize to form H^+ ions
- Bases dissociate to form OH⁻ ions

Lewis

- · Acids gain an electron pair
- Bases lose an electron pair

Strong Acids and Bases

Acids		Bases	
HCI	H_2SO_4	LiOH	CsOH
HI	HClO ₃	NaOH	$Ca(OH)_2$
HNO ₃	HClO ₄	КОН	Sr(OH) ₂
HBr		RbOH	$Ba(OH)_2$