

Description

Euler's Method is a process for finding an approximate numerical solution to the differential function y' = F(x, y) at a desired value of x.

The process requires we start at a known value for the function, (x_0, y_0) , close to our target x.

We are going to interate from our known x_0 to our target x in steps of some increment h.

The Method...

As a Sequence (Use This)

• The successive approximations can be expressed as a pair of recursive sequences, as follows:

$$P = y_{n+1} = y_n + hF(x_n, y_n)$$

 $x_{n+1} = x_n + h$ Note that (x_n)

Note that $F(x_n, y_n)$ is the differential function evaluated at (x_n, y_n) ; thus it is the value of the slope y'.

> You repeatedly evaluate these sequences until x_n equals your target x value.

As a loop (Same as above, but a bit clunkier)

- 1 Find the value of derivative at (x_0, y_0) ; call this *m*.
 - 2 Calculate your new x-value, x_1 $x_1 = x_0 + h$
 - 3 Calculate the y-value, y_1 , of the function at x_1 : $y_1 = mh + y_0$
 - ▷ Now we have (x_1, y_1)
 - 4 Let (x_1, y_1) be our new (x_0, y_0) , and return to step 1.
 - 5 Repeat the loop until you have reached your target *x* value.