

Directional Derivatives, D_u

f(x,y)

Given f(x, y) and unit vector $\mathbf{u} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$, the directional derivative of f in the direction of \mathbf{u} is:

 $D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$

f(x, y, z)

Given f(x, y, z) and unit vector $\mathbf{u} = \alpha \mathbf{i} + b\mathbf{j} + c\mathbf{k}$, the directional derivative of f in the direction of \mathbf{u} is:

$$D_{u}f(x,y) = af_{x}(x,y,z) + bf_{y}(x,y,z) + cf_{z}(x,y,z)$$

Gradient, ∇

 $\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$ $\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$

Gradient Properties

The following are true for functions of two or three independent variables:

- If $\nabla f(x,y) = 0$, then $D_u f(x,y) = 0$ for all u.
- The direction of maximum increase of f(x, y) is $\nabla f(x, y)$.
- The direction of minimum increase of f(x, y) is $-\nabla f(x, y)$.

▷ Think of this as the direction of maximum decrease.

- The value of the maximum increase is $\|\nabla f(x, y)\|$.
- The value of the minimum increase is $-\|\nabla f(x,y)\|$.
- $\nabla f(x_0, y_0)$ is normal to the level curve passing through (x_0, y_0) .