

Geometric Series

Given a geometric series of the form $\sum_{n=0}^{\infty} ar^n$, the series converges if -1 < r < 1.

Nth-Term Test

Given $\sum_{n=1}^{\infty} a_n$ and $L = \lim_{n \to \infty} a_n$ \triangleright If L = 0, the series converges (maybe)

▷ If $L \neq 0$, the series diverges (definitely)

Important note: the Nth-term test cannot reliably be used to test for convergence.

p-Series

Given a p-series of the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

The series converges if the constant p > 1.

Alternating Series

Given alternating series $\sum_{n=0}^{\infty} (-1)^n a_n$ and $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ where $a_n > 0$

The series converge when two conditions are met:

$$\lim_{n \to \infty} a_n = 0$$

2 $a_{n+1} \le a_n$ for all *n*. (*i.e.*, the series is monotonically decreasing.)

Absolute convergence

If $\sum |a_n|$ converges, then $\sum a_n$ also converges. (Note the converse is not true.)

Remainder (maximum error)

Let S_N be the Nth partial sum of an alternating series; the maximum

difference, R_N (also called the maximum error or remainder), between S_N and the sum of the entire series is

$$|R_N| \le a_{N+1}$$

Harmonic Series A harmonic series is a p-series in which p = 1: $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$ A general harmonic series is of the form $\sum_{n=1}^{\infty} \frac{1}{an+b}$

Absolute vs Conditional

Given convergent series Σa_n

- Σa_n is **absolutely convergent** if $\Sigma |a_n|$ is also convergent.
- Σa_n is conditionally convergent if $\Sigma |a_n|$ is divergent.

Telescoping Series

 ∞

Given telescoping series $(b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \dots + (b_n - b_{n+1})$

- ▷ Series converges if $\lim_{n \to \infty} b_{n+1}$ is finite
- ▷ Further, the sum of the series, $S = b_1 \lim_{n \to \infty} b_{n+1}$

Integral Test

Given $a_n = f(n)$, where f(n) is positive, continuous, and decreasing for all n,

 $\sum_{n=1}^{\infty} a_n$ and $\int_{1}^{\infty} a_n$ are either both convergent or both divergent.

Root Test

Given $\sum a_n$ and $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

- ▷ If L < 1, the series converges
- ▷ If L > 1, the series diverges
- \triangleright If L = 1, the test is inconclusive

Ratio Test

Given $\sum a_n$ where a_n is non-zero for all n and $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

- ▷ If L < 1, the series converges absolutely
- ▷ If L > 1 or $L = \infty$, the series diverges
- ▷ If L = 1, the test is inconclusive

Comparison Test (Direct Comparison Test)

Given
$$0 \le a_n \le b_n$$
 for all values of n ,
 \triangleright If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ also diverges
 \triangleright If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges

Limit Comparison Test

Given $a_n, b_n > 0$ and $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ If L is finite and positive, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.

Remainder for Integral Test

If a_k is countinuous, positive, and decreasing for $x \ge$ some value n, and $\sum a_n$ is convergent, and $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d} x \le R_n \le \int_{n}^{\infty} f(x) \, \mathrm{d} x$$

Using the Comparison Tests We often use the comparison and limit comparison tests to compare a series with a p-series or geometric

series.

n + 1