

The Basics

Definition: $i = \sqrt{-1}$

Powers of *i*

The pattern:	$i^{0} = 1$	$i^1 = i$	$i^2 = -1$	$i^{3} = -i$
	$i^{4} = 1$	$i^{5} = i$	$i^{6} = -1$	$i^{7} = -i$

To determine the value of an arbitrary power of *i*, such as i^{247} :

- 1 Divide the exponent by 4 and examine the remainder e.g., for i^{247} : 247 ÷ 4 = 61, remainder 3
- 2 Use the remainder in the above pattern to get the final value e.g., for i^{247} : our remainder was 3; $i^3 = -i$, so $i^{247} = -i$

Arithmetic

Addition & Subtraction

Add the real and imaginary parts separately

e.g.,
$$(6+2i) + (4-5i) = 10-3i$$

 $(6+2i) - (4-5i) = 2+7i$

Multiplication

FOIL the two complex values

e.g.,
$$(6+2i)(4-5i) = 24 - 30i + 8i - 10i^2$$

= $24 - 30i + 8i - 10(-1)$
= $34 - 22i$

Division

Multiply the top and bottom of the fraction by the conjugate of the denominator:

e.g.,
$$\frac{6+2i}{4-5i} = \frac{6+2i}{4-5i} \times \frac{4+5i}{4+5i} = \frac{14+38i}{16-25i^2} = \frac{14+38i}{41}$$