

Gravitational force and acceleration

Force of gravity between two masses

$$F = G \, \frac{m_1 \, m_2}{r^2}$$

 $g = G \frac{M}{2}$

F - Force, N; m1, m2 - mass, kg; M - mass of primary, kg; r - distance between mass' centers, m

Gravitational Constant $G = 6.67 \times 10^{-11}$

Gravitational Potential Energy and Potential

Gravitational Potential Energy

 $U = -G \frac{m_1 m_2}{r}$

Gravitational Potential

$$V = -G \frac{M}{r}$$

U - Gravitational PE, J; V - Gravitational Potantial, J/kg; m1, m2 - mass, kg; M - mass of primary, kg; r - distance between mass' centers, m

Orbits

Orbital Velocity

$$V_{orb} = \sqrt{G\frac{M}{r}}$$

Orbital PeriodTotal Orbital $T = \frac{2\pi r}{V_{orb}}$ $T^2 = \frac{4\pi^2 a^3}{GM}$ $E = -G \frac{Mm}{2a}$

Total Orbital Energy (PE + KE)

Gravitational Field Strength (Acceleration)

Vorb - Orbital velocity, m/s; T - orbital period, sec; M,m - mass of primary, secondary, kg; r - distance to primary center, m; a - semi-major axis, m

Miscellaneous

E cupe velocity

Kepler's Third Law: Orbital Period vs Radius

$$V_{esc} = \sqrt{2G\frac{M}{r}} \qquad V_{esc} = \sqrt{2} V_{orb} \qquad T^2 = \frac{4\pi^2}{GM} a^3 \qquad \text{For solar orbits: } \frac{T^2}{\frac{R^3}{M}} = 1$$

Vesc - Escape velocity, m/s; M - mass of primary, kg; r - distance to center, m; T - period; R - orbital radius; a - semi-major axis

Note that this works only if T is in earth years and R is in a.u.