

Reaction Rates

Given a reaction $n_AA + n_BB \rightarrow products$ that has no intermediate steps.

Reaction Rate with respect to $A = \frac{\Delta[A]}{\Lambda t}$

 Δt

Overall Reaction Rate

$$= \frac{1}{n_{\mathsf{A}}} \frac{\Delta[\mathsf{A}]}{\Delta t} = \frac{1}{n_{\mathsf{B}}} \frac{\Delta[\mathsf{B}]}{\Delta t}$$

Reaction Rate & Temp Reaction rate approximately doubles for each 10°C increase in temperature.

Rate Law

Rate = $k[A]^{\alpha}[B]^{b}$

- a & b are usually integers, unrelated to n_A and n_B .
- a is the "order of the reaction with respect to A."
- Overall order of the reaction is the sum of the individual orders (*i.e.*, a + b)

Determining Rate Order and Half-Life $(t_{\frac{1}{2}})$

0th-Order: $[A] = [A]_0 - kt$

▷ Graph of [A] vs t yields a straight line

$$\triangleright \quad t_{1/2} = \frac{[A_0]}{2k}$$

1st-Order: $[A] = [A]_0 e^{-kt}$ or $\ln[A] = \ln[A]_0 - kt$

 \triangleright Graph of In[A] vs t yields a straight line

$$\triangleright t_{1/2} = \frac{\ln 2}{k}$$

2nd-Order: $\frac{1}{[A]} = \frac{1}{[A]_0} + kt$ \triangleright Graph of $\frac{1}{[A]}$ vs t yields a straight line

$$\triangleright t_{1/2} = \frac{1}{k[A]_0}$$