

Sine & Cosine

We'll use $y = 2 \sin(-2x + \pi) + 1$ as our example.

- 1 Rewrite as needed, factoring out x coefficients and moving or removing negative values within the function parentheses.
- $y = 2\sin(-2x + \pi) + 1$
- $y = 2\sin(-2(x \frac{\pi}{2}) + 1$
- $y = -2\sin(2(x \frac{\pi}{2}) + 1$

- 2 List the function's data
 - ▶ Amplitude
 - ▶ Period
 - ▶ Quarter-period
 - ▶ Phase (horizontal) shift
 - ▶ Vertical shift

- A: 2 (reflected)
- P: π
- $Q-P:\frac{\pi}{4}$
- PhS: $\frac{\pi}{2}$ left
- VS: 1

3 Map out new period

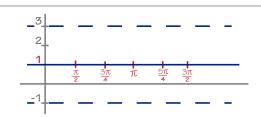
offset . . . (Offset+Period)

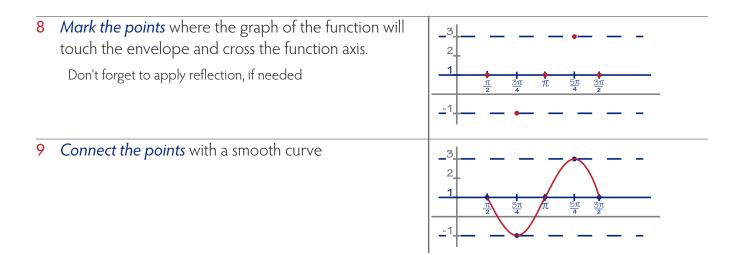
- $\frac{\pi}{2}$... $\frac{3\pi}{2}$
- 4 List "critical points" by repeatedly adding the quarter-period to the offset.

offset, pt1, pt2, pt3, (End-of-period)

 $\frac{2\pi}{4}$, $\frac{3\pi}{4}$, $\frac{4\pi}{4}$, $\frac{5\pi}{4}$, $\frac{6\pi}{4}$

Tip: It's usually easier to keep all the points unreduced while you're adding the quarter-periods then reduce when you're done.


5 Draw function axis on coordinate system


This will be a horizontal line at the vertical shift position Label the *y*-value

- 6 Draw dashed envelope lines at a distance of the amplitude above and below the function axis.

7 Mark the critical points on the function axis

Don't bother being particularly accurate relative to the origin; just make sure you label their x-values Your teacher may want you to also mark them on the x-axis

© 2015 John Deubert www.acumen-tutoring.com