

The Basic Lewis Structure Streamlined Algorithm

Here is a nicely streamlined algorithm for constructing a Lewis diagram. We'll use SO_2 as our example.

1		1			
I	Count the total number of valence electrons in all the atoms in the chemical formula.	S	02		5: $6 \times 1 = 6$ 0: $6 \times 2 = 12$
					total: 18 valence electrons
2	Distribute the terminal atoms around the central atom.	0	5	0	
3	Multiply the number of Hydrogen Atoms by 2 and the				5: 8 × 1 = 8 0: 8 × 2 = 16
	number of all other atoms by 8.				U: $\delta \times Z = 10$ total: 24 needed electrons
	Add those numbers.				
4	Subtract the valence electrons from the needed				1/ (04 40) 7
	electrons & divide this difference by 2.				$\frac{1}{2}(24 - 18) = 3$ We need 3 bonds
	This is the number of covalent bonds you need				
5	Connect the central atom to the peripheral atoms	••	••		•
	with the required number of bonds.	: <u>O</u>	$-\tilde{S}$	=):
	Then fill out each atom's octet with lone pairs.				
6	If you have valence electrons left over, add them as		:F	:	
	lone pairs to the central atom.	:	 F-5	.– Ë:	
	► This allows for oddities like SF ₄		:F	:	

Advanced Steps (if you know about formal charges

7	Check the formal charge of each atom.	:Ö-5=Ö: -1 +1 0
8	Extend the octet of the central atom, if appropriate, to minimize the total formal charge.	:Ö=Ë=Ö: